Equation Sheet

Linear Motion

$\overline{\mathrm{V}}=\frac{\Delta \mathrm{s}}{\Delta \mathrm{t}}$
(average velocity)
$\overline{\mathrm{v}}=\frac{\mathrm{v}_{1}+\mathrm{v}_{0}}{2}$
(average velocity)
$v_{1}=v_{0}+a \Delta t$
(motion)
$a=\frac{\Delta v}{\Delta t}$
(acceleration)
$v_{1}^{2}=v_{0}^{2}+2 a \Delta x$
(sans time)

$$
\begin{array}{cc}
\mathrm{y}_{1}=\mathrm{y}_{0}+\mathrm{v}_{0} \Delta \mathrm{t}+\frac{1}{2} \mathrm{a} \Delta \mathrm{t}^{2} & \mathrm{~m}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}} \\
\text { (vertical position) } & \text { (slope) }
\end{array}
$$

Forces

$\Sigma \mathrm{F}=\mathrm{ma}$
$\mathrm{F}_{\mathrm{s}}=\mu_{\mathrm{s}} \mathrm{F}_{\mathrm{N}}$
(static friction)
$w=m g$
(weight)
$F_{k}=\mu_{k} F_{N}$
(kinetic friction)
$\mathrm{m}_{0} \mathrm{~V}_{0}=\mathrm{m}_{1} \mathrm{~V}_{1}$
(conservation of momentum)
$F_{N}=m g$
$\rho=m v$
(momentum)
$m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}+m_{4} v_{4}$
(collision equation)

$\sum_{\text {(conservation of }} \mathrm{p}_{0}=\sum \mathrm{p}_{1}$	$\mathrm{~m}_{0} \mathrm{v}_{0}=\mathrm{m}_{1} \mathrm{v}_{1}$
momentum)	(conservation of momentum)

$m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v_{3}$

Vector Components

$$
\begin{aligned}
& \mathbf{v}_{\mathrm{x}}=\mathrm{v} \cos \theta \\
& \mathbf{v}_{\mathrm{y}}=\mathrm{v} \sin \theta
\end{aligned}
$$

Work and Power

$\mathrm{W}=\mathrm{Fd}$	$\mathrm{P}=\frac{\mathrm{W}}{\mathrm{t}}$	$\mathrm{PE}=\mathrm{mgh}$	$\mathrm{KE}=\frac{1}{2} \mathrm{mv}^{2}$
(work)	(power)	(potential energy)	(kinetic energy)

Torque

$$
\begin{gathered}
\tau=\mathrm{F} \ell \\
\text { (torque) }
\end{gathered} \quad \sum \tau_{0}=\sum \tau_{1} \quad \tau_{1}+\tau_{2}+\ldots=\tau_{3}+\tau_{4}+\ldots
$$

Circular Motion

$\Delta \theta=\frac{s}{r}$
$\omega=\frac{\mathrm{V}}{\mathrm{r}}$
$\omega=\frac{\Delta \theta}{\Delta \mathrm{t}}$
$\alpha=\frac{\Delta \omega}{\Delta t}$
$\alpha=\frac{\mathrm{a}}{\mathrm{r}}$
$\omega_{1}=\omega_{0}+\alpha \Delta t$
$\theta_{1}=\theta_{0}+\omega_{0} \Delta t+\frac{1}{2} \alpha \Delta t^{2}$
$a_{c}=\frac{v^{2}}{r}$
$a_{c}=r \omega^{2}$
$F_{c}=\frac{m v^{2}}{r}$
$\mathrm{F}_{\mathrm{c}}=\mathrm{mr} \omega^{2}$

Notes

"I have learned that people will forget what you said, people will forget what you did, but they will never forget how YOU made them Feel"
 -- Maya Angelou

