IPC

Naming Compounds

Most compounds are either ionic or covalent and consist of two parts (binary). The general rule is to put the more metallic element first and the less metallic element second. The more metallic element uses its full name and less metallic element is named with its **root** and the suffix "-ide".

water

Common Nonmetallic Roots

H =	B =	C =	N =
O =	F =	P =	S =
Cl =	Br =	I =	

Numeric Prefixes

one	two	three	four
five	six	seven	eight
nine	ten		

Note: The "a" or "o" on the end of the prefix is deleted with an element beginning with a vowel.

Metal lons

COMMON METAL IONS (new system)

copper(I)	mercury(I)	manganese(II)
copper(II)	mercury(II)	cobalt(II)
nickel(II)	chromium(III)	lead(II)
tin(II)	iron(II)	lead(IV)
tin(IV)	iron(III)	aluminum

COMMON NONMETAL IONS

sulfide bromide _____ fluoride _____ hydride chloride iodide oxide _____phosphide

BINARY IONIC COMPOUNDS

Binary ionic compounds consist of a **metal cation** and a **nonmetal anion**. The cation is named first and the anion follows with the suffix "-ide" added.

EXAMPLE:

KBr potassium + brom + **ide CaCl**₂ calcium + chlor + **ide**

Many of the transition metals and the metals of Groups IIIA, IV, and VA have more than one oxidation metal. These metals can form more than one compound with the same nonmetal. To distinguish among all the possibilities, the oxidation number of the metal is indicated by a Roman numeral in parentheses following its name.

EXAMPLE:

 Cu_2O (2 Cu⁺ + O²⁻) copper (I) oxide CuO (Cu²⁺ + O²⁻) copper (II) oxide

POLYATOMIC IONS

Some compounds contain polyatomic ions that behave like monatomic ions. These compounds are named as though they were binary ionic compounds. So, you must be able to determine the charge of the polyatomic ion.

EXAN	MPLE:					
<u>NH</u> 41	$(NH_{4^{+}} + I^{-})$	ammonium iodide				
Na <u>Ol</u>	$\underline{\mathbf{H}} \qquad (\mathrm{Na^{+}} + \mathrm{OH^{-}})$	sodium hydroxide				
COMMON POLYATOMIC IONS						
	_ hydroxide ion	carbonate ion	chlorate ion			
	_ phosphate ion	nitrate ion	acetate ion			
	_ammonium ion	sulfate ion	iodate ion			

Copyright © 2020by Darrell Causey, Jr. All Rights Reserved

BINARY MOLECULAR COMPOUNDS

Most **binary molecular** compounds are composed of **two nonmetals**. Although many nonmetals have multiple oxidation numbers, their oxidation numbers are not indicated by Roman numerals or suffixes. Instead, elemental parts in a binary molecular compound are indicated by **numeric prefixes**.

EXAMPLE:

SO₂ sulfur dioxide

N₂O₄ dinitrogen tetroxide

_____ SF6 BaCrO₄ SF_2 _____SiO₂ $NH_4C_2H_3O_2$ _____ Cl₂O₇ _____N_2O_5 KH_2PO_4 NaHCO₃ NaH _____TiCl₄ $Ca_3(PO_4)_2$ _____NI₃ KMnO₄ _____CuI₂ NaCl

"Don't go around saying the world owes you a living; the world owes you nothing; it was here first." -- Mark Twain

Copyright © 2020by Darrell Causey, Jr. All Rights Reserved

PRACTICE