Chemistry Cycle Sheet

April 20, 2020 thru April 24, 2020

Goals: TLW develop an understanding of chemical

bonding and the different types.

Monday: Class @1:00 – 2:15 PM

Molecular Geometry Do Checkups #78 and 79

Homework: Do warm up #96

Tuesday: No meeting. Watch Videos

Homework: Do worksheet

"Metallic Bonding"

Wednesday: No Meeting. Watch Videos.

Homework: Do worksheet

"Molecular Geometry"

Thursday: Class @1:00 – 2:15 PM

Polar Molecules

Homework: Do warm up #98

Friday: No meeting. Watch Videos

Homework: Make up work

Vocabulary

halides formula unit electronegativity
diatomic bonding electrons coordinate covalent bond
lone pair covalent bond pure covalent bond
resonance ionic bond polar covalent bond
crystal metallic bond binary compound

Know the following

the general rules for chemical bonds ionic and covalent bonds the properties of ionic, covalent and metal substances nonpolar and polar covalent bonds the driving force behind chemical bonding Lewis structural formulas determine the possible bonds predict the bond type the 7 diatomic elements

Chemical Bond

It's an electrostatic attraction between two atoms strong enough to act as a unit.

onic Bond

A chemical bond created by the <u>transfer</u> of one or more electrons.

Covalent Bond

A chemical bond created by the <u>sharing</u> of one or more electrons.

Polar Bond

It's a covalent bond with a partial positive end and a partial negative

Metallic Bond

This a bond between atoms of a metal created by sharing free outer shell electrons.

Polar Molecule

This is a molecule with a partial positive end and a partial negative

Dinole

A dipole is a polar covalent molecule.

Molecule

A molecule is the simplest form of a covalent compound.

Formula Unit

A formula unit is the simplest form of an ionic compound.

Coordinate Covalent Bond

It's a covalent bond in which both electrons come from the same atom.

Intermolecular Forces

Intermolecular forces (IMF's) refer to the <u>attraction</u> between the individual molecules or polyatomic ions of a substance.

Types:

Ion-Ion Ion-Dipole

Van der Waals hydrogen bonds dipole-dipole dispersion forces

Hybrid Orbitals

Hybridization is the mixing of a set of unequal orbitals on an atom to obtain a new set of equal orbitals.

"s" + 3 "p" =
$$4 \text{ sp}^3$$

tetrahedral

"s" + 3 "p" + "d" =
$$5 \text{ sp}^3\text{d}$$
 trigonal bi-pyramidal

"s" + 3 "p" + 2 "d" =
$$6 \text{ sp}_3 d^2$$
 octahedral

Molecular Orbitals (MO)

Molecular Orbitals are formed by the over-lapping of atomic orbitals from different atoms to create a molecule.

Sigma Bonds (σ)

A sigma bond is a molecular orbital created by the overlapping of atomic orbitals parallel to the plane.

Pi Bonds (π)

A pi bonds is a molecular orbital created by the overlapping of atomic orbitals perpendicular to the plane.

7 Diatomic Elements

hydrogen	H_2	chlorine	Cl_2
nitrogen	N_2	bromine	Br_2
oxygen	O_2	iodine	I_2
fluorine	$\mathbf{F}_{\mathbf{c}}$		

Checkup #78

Determine the <u>predominate</u> bond in each of the following: (I)onic or (C)ovalent

 1.	NaI	 _ 2.	CH_3Cl	3.	CO_2

Checkup #79

Which of the following **DOES NOT** represent a stable ionic compound? (circle one)

- 1. MgCl₂; NaS; SrS
- 2. MgI; Al(OH)₃; K₂O
- 3. AlF₄; BaCl₂; NaBr

Write the symbol for a cation and an anion that is <u>isoelectronic</u> with **Ar**.

4	5

Checkup #80

Determine the total number of valence electrons available in the following molecules.

Checkup #81

Which atom in each of the following pairs has the <u>larger</u> electronegativity. (circle one)

- 1. C, H
- 2. As, Bi
- 3. Na, K

- 4. F, Br
- 5. I, O